

Amr Awadallah and Mendel Rosenblum
Computer Systems Lab, Stanford University

aaa@cs.stanford.edu, mendel@cs.stanford.edu

Abstract- Today most multiplayer game servers are pre-located
statically, which makes it hard for gamers to find equi-ping
hosts for their matches. This is especially important for first
person shooter games (FPS), which are a class of interactive
games that is very sensitive to difference in ping between the
participants and the hosting server. In this paper we present a
novel solution, which builds on top of the classic operating
systems concept of a virtual machine monitor (VMM). A VMM
allows us to encapsulate the state of the game server in a virtual
machine file, which could then be activated on any real machine
running the VMM software. The main advantage of this solution
is mainly backward compatibility, that is we can take any
existing FPS game and migrate it to this platform without any
code changes to the game client nor the server. Another
advantage is the economies of scale for such a network since it
can be shared between different games. We describe our
vMatrix framework and address how to move the virtual
machine game servers across the real-machines to minimize the
difference in ping between all participants of a given match. We
also demonstrate this solution using Microsoft’s popular Halo
PC game, we show that this solution does not degrade the game
performance and does not require any code changes.

Keywords: virtual machine monitor, first person shooter,
multiplayer games, ping fairness.

1 INTRODUCTION

In this paper we describe a practical solution for enabling fair
online first person shooter (FPS) gaming. One of the most
important aspects for participants of a FPS match is to have
equal round-trip time to the server hosting the match (also
known as ping time). This is important since it dictates the
frequency of state updates from the host to the clients, thus
the players with lower pings can indeed see the future of
lagging players and shoot them before they know it! Not only
that, the lagging players have incorrect positions for the other
players as their clients try to extrapolate the current state
based on the last (now stale) state update they got from the
server (a common technique known as Dead Reckoning).
Professional players are very aware of this limitation, hence
the reason why they take zigzag paths while running around
to fool the extrapolation done by the gaming clients forcing
the other players to shoot at false projected positions instead
of their actual positions, which leads the game server to
register a miss.

Previous studies in this area demonstrated that players prefer
absolute pings to be less than 180ms, some of them further
emphasized that relative delays between participants is more
important than the absolute value of latency to the server [23]
[24] [25] [26] [27].

Today most game servers are pre-located at static nodes
around the Internet, this is ok for the casual gamers whom
join and leave all the time (they just pick the server closest to
them). However, serious players usually form what is called
a clan, and they purchase or rent a hosting server so that they
can host the clan matches on it. Its typical that each clan gets
a server local to their country, or side of the country in case
of large countries like the US. So for example, in the US an
east coast based clan will tend to get a server in the east coast,
while a west cost clan will get a server in the west coast. This
leads to the unfairness issue when the clans have matches
against each other. The east coast clan will argue that the
match should happen on their east coast server, and the west
coast clan will argue for the reverse. The reason arguments
arise is that typical round-trip-times rise from less than 30ms
when playing on a server in the same coast as the clan
players, to more than 130ms when crossing over to the other
coast. This difference of 100ms gives a large advantage to the
local clan; they literarily see the positions of other players
and shoot at them before they get there. These differences can
be much worse than 100ms for cross-country matches.

Its important to re-iterate that it’s not the large round-trip-
time (also known as ping) it self that irks players the most,
it’s the difference in ping that leads to the unfairness.
Today’s deployed solutions to this problem are un-
satisfactory. For example, one solution is alternating matches
between the home and away team, but this still does not
change the fact that during each match the low-ping team will
have a significant advantage. Another solution is searching
for another clan with a server central to both of the
participating clans, however this is very adhoc and most of
the time such a server cannot be found since one of the
participating clans still needs to have the password for the
game server to setup the proper match configuration.

The solution is accessibility to game servers that are equi-
ping to all participants. However, its very cost-prohibitive to
install copies of each game on servers all over the Internet,
rather we need an economical solution that allows us to share

 The vMatrix: Equi-Ping Game Server Placement For Pre-Arranged
First-Person-Shooter Multiplayer Matches

the hardware easily between different games (and even other
vMatrix applications that are not gaming related).

The main reason leading to hardship moving game servers in
and out of hardware servers is the dependencies that the
server code has on operating systems, libraries, third party
modules, server hardware, and even people (the game
administrators). Simply copying the code of the game server
is not possible since the target machines need to have exactly
the same environment for the code to run unchanged, which
is not practical. The library versions and patches that work
with one game server might cause another server to fail.

We propose a novel backward-compatible solution that builds
on top of the classic OS concept of a Virtual Machine
Monitor (VMM) [2] (refer to Appendix A for a brief review
of Virtual Machines). The observation we make is that a
VMM virtualizes the real machine (RM) at the hardware
layer (CPU, Memory, IO), and exports a virtual machine
(VM), which exactly mimics what a real machine would look
like. This allows us to encapsulate the state of the entire game
server in a VM file, which could then be instantiated on any
RM running the VMM software. This solves the software
dependencies problem since the whole service is transferred
with the OS, libraries, code, modules, and code that the
service depends on. It solves the hardware dependencies
problem since the VMM can lie to the overlying OS about the
hardware resources available to it (e.g. memory size), hence
mimicking the same hardware environment for that service
regardless of the real hardware of the hosting real machine
(though there might be performance degradation). It also
solves the people problem since the VM capsule can include
the passwords and access rights that the game administrators
need to manage the server and setup the proper matches.

Hence the problem is reduced to equi-ping placement of large
VM files within a network of RMs running the VMM
software; we call this network of virtual machines the
vMatrix1.

We do not attempt to build a VMM, but rather we reference
existing software for the x86 architecture from VMware, Inc.
[1]. Note that similar VMM software is also available from
Microsoft [5], and an open-source version is available as Xen
 [28]. We choose VMware due to their close relationship with
Stanford University, however we think other VMMs will be
just as useful.

In this paper we present our framework in detail and briefly
address how to place the virtual machine game servers
services across the real-machines to minimize ping difference
between the participating players without degrading the

1 The name “The vMatrix” comes from the analogy to the 1999 sci-fi movie
“The Matrix”. In the movie, machines controlled humans by virtualizing all
their external senses; we propose doing the same back to the machines! It is a
virtual matrix of real machine hosts running VMM software, which are ready
to be possessed by guest VMs (ghosts) encapsulating Internet services.

server performance (in terms of latency, throughput, and
availability). Another challenge that we touch on is how to
avoid making any significant architecture or software
changes to existing game servers so that this solution is
backward compatible.
We claim that the distinguishing advantages of our approach
are the combination of:

1. Equi-ping placement of game servers to minimize round-

trip-time difference between participants;
2. Backward compatibility leading to zero cost for

converting existing game servers to run within our
framework;

3. Economies of scale by leveraging the fact that this
network can be shared among many different types of
games rather then being fully dedicated to one game.

In two previous papers [8] [9] we covered additional
advantages of the vMatrix platform, which include:

1. Leveraging the migration aspects on an Internet-scale to

achieve Dynamic Content Distribution;
2. Enabling server-multiplexing to reduce total cost of

ownership;
3. Providing quick re-activation of servers to reduce mean

recovery times in cases of software crashes;
4. Absorbing flash crowds by on-demand replication of

servers.

In section 2 we illustrate a motivating example. In section 3
we present the vMatrix framework. In section 4 we discuss
the vMatrix implementation details. In section 5 we discuss
our experiences with migrating the Halo PC game server to
the vMatrix platform. Finally in sections 6 and 7 we cover
related work then conclude.

2 MOTIVATION

Figure 1: Today’s static server placement creates unfairness for First-Person-
Shooter Clan matches.

Clan A Clan B

130ms

30ms

The scenario illustrated in Figure 1 shows what happens in
today’s world of statically placed first-person-shooter game
servers. This occasion arises frequently when clans (teams)
from different countries are to play each other, it can also
happen within large countries like the US as illustrated. In
this scenario clan A will typically get low pings to the server,
on the order of 30ms round-trip-time, while clan B will get
pings on the order of 130ms or more. This leads to a ping
differential of 100ms, which allows clan A players to see the
future of clan B players, hence they can start shooting at them
before clan B players detect their presence.

In such situations it is not uncommon for clan B to call off
the match as most gaming organizing comities (e.g. Cyber
Athlete League [29]) stipulate that ping differences of more
than 90ms can lead to voiding the match. The clans struggle
to find an equi-ping server, which is not always possible
since they need to have administration access to that server to
setup the proper match configuration.

Its important to note again that unfairness is not due to the
large absolute value of the ping, but rather the large average
ping differential between both clans.

The game servers are usually statically separated like this
because it’s very hard for one clan to own more than one
server in different places spread across the Internet. There are
a number of new renting services that allow clans to rent a
server for a few days, but these are still not very economical
since they require at least one day of rent, as opposed to a few
hours for a single match. Also these renting services do not
currently reveal much about the server location and whether
it will be fair for all the participants.

Figure 2: Dynamic game server placement using the vMatrix infrastructure
lets us place the server at an equi-ping node with respect to all participants.

Within the vMatrix we add a VMM separation layer between
the VMs (carrying the OS and code for the services) and RMs

(which are the shared resource). Now with the vMatrix
renting service, an equi-ping RM can be allocated then the
proper VM carrying the needed game server can be copied
over to it and instantiated. In contrast with the same snapshot
we represented in Figure 1, which lead to a ping differential
of 100ms, Figure 2 illustrates how we can have an equi-ping
of 80ms to all participants, bringing the ping differential
down to zero.

3 THE VMATRIX FRAMEWORK

The vMatrix is a network of real machines (RMs) running
virtual machine monitor software (VMM) such that virtual
machine files (VMs) encapsulating a machine for a given
game server can be activated on any RM very quickly (on the
order of seconds to minutes depending on the underlying
storage and network infrastructure, e.g. local hard-disks
versus a fiber-optic Storage Area Network).

3.1 Main Components

The basic framework for the vMatrix is illustrated in Figure
3. There are 3 main clusters:

1. The Production Cluster: this is where the VMs are

instantiated on dedicated RMs dispersed over the
Internet. The Oracle, as described below, picks the
optimally placed RM to achieve equi-ping.

2. The Loading Chambers: this is where the VMs are

instantiated for maintenance purposes. While in this state
the clan administrators can connect to the server, install
the game server software, configure the server properly,
etc. Note that since the servers are not getting operational
load yet, we can have more than one VM sharing the
same RM.

3. The Hibernation Nest: this is simply the backend storage

for keeping all the VM files in dormant suspended state
until needed. The VMs are not accessible in this mode
(neither for administration, nor for operational load).

The Oracle is the program responsible for maintaining the
state of all VMs and RMs and it supervises the vMatrix
network. As new RMs are added to the network and loaded
with the VMM software, they are subscribed with the Oracle.
Similarly, whenever a new VM is created it is registered with
the Oracle. The Oracle is also responsible for the matching of
VMs to RMs and copying the VM file to that specific RM
then activating it.

In our simple prototype, the Oracle is a Perl script that reads
configuration files listing all available RMs and VMs. The
Oracle communicates with the RMs to copy VM files from
the storage to them (using scp), and communicates with the
VMM server software on each RM to boot or suspend VMs
(this is done using the VMware Perl API).

Real
Machine

Virtual
Machine

VMM

Clan A Clan B

80ms

Figure 3: The vMatrix Framework

3.2 VM Server Lifecycle

The simple state diagram shown in Figure 4 describes the
lifecycle of a VM Server:

Figure 4: Lifecycle of a Virtual Server

4 IMPLEMENTATION DETAILS

As contrasted to previous work (which we cover in section
6), we claim that this solution presents the smallest switching
cost for porting an existing game server into such a dynamic
allocation network (i.e. backward compatibility) and at the
same time it achieves the advantages of equi-ping allocation
and economies of scale. In section 5 we illustrate this ease of
conversion through a real-life example.

4.1 Equi-Ping Game Server Placement

The game server VMs need to be instantiated on an RM that
is equi-ping to all participants, however participants are
usually not known until match time. The straightforward
approach to get latency information is to build ping profiles
from each participant to all available RM servers just before
the match begins. This solution does not scale very well if we
have a large pool of servers to choose from. A ping
topography map for the Internet is needed; such database
should be able to return the ping difference given two IP
addresses. Akamai’s EdgeScape IP database [30] can return
the connection speed for a given IP, but will not provide the
latency between two given IPs. A more practical solution is
Meridian [32] from Cornell University; it can efficiently
return the latency between a set of player nodes and a set of
server nodes by using routing measurements and gossip
protocols. King [35] is another tool that can be used to
efficiently estimate latency between two nodes using their
immediate downstream DNS servers as proxies.

So the first step in the placement algorithm is to build a cross
matrix with the pings between each of the player IPs and the
available RM IPs. The algorithm then proceeds as follows:

Let S be the set of RM servers available to host the match,
and let m be the number of available servers.

Let P be the set of players participating in this match, and let
n be the number of players.

Let RTTs,p be the round-trip-time (ping) from server s to
player p, where s belongs to S, and p belongs to P.

Next we disregard all servers that have RTTs,p larger than
180ms, which is the maximum ping that FPS players can
reasonably tolerate. This leads to a smaller set S′ that only
contains servers that satisfy the 180ms constraint.

Now, for each server s in S′ we compute a closeness factor Cs
representing the average differential ping between the players
if server s is picked:

n

RTTRTT

C Pp Pi
isps

s 2

,,∑∑
∈ ∈

−
=

Lastly we search for the smallest Cs among all S′ servers and
that is our target server to host the match.

The order of complexity of this algorithm is O(n2m). Notice
that this is not as expensive as it seems since n is usually
small on the order of 16 to 64 players max, so this is really a
linear algorithm with number of servers.

The Oracle:
This is the

main control
program

RM

VMM

VM

RM

VMM

VM

RM

VMM

VM

Hibernation Nest:

VM files are
suspended and
stored here for
later retrieval.

Production
Cluster: live

operational VMs,
typically only one

VM per RM

Loading Chambers:
Development

and Maintenance
Cluster, there could
be more than one
VM per RM here.

VM VM

VM VM

VM VM

VM VM

RM

VMM

VM VM VM

RM

VMM

VM VM VM

Hibernation Nest

Loading Chambers

Operational

1. A large number of virtual server files are
stored as dormant files in a SAN or NFS
server. They can be in frozen pre-booted
state for fast re-activation.

2. A number of virtual servers are activated
in shared RMs (i.e. more than one VM per
RM) so game administrators can maintain
them.

3. A virtual server is activated on a
dedicated RM in preparation for a match to
begin.

The placement decision can be cached in case the same set of
players play again. The Oracle then proceeds to scp the VM
image for the needed game server to that location. Once the
VM is transferred the Oracle instructs the VMM software to
activate that image making the server available to the players.

Note that most VMM software allows for the suspension of
VMs in a live state, such that all CPU registers, memory, and
IO buffers are dumped to disk, then the machine could be
resumed later at the same checkpoint that it was suspended at
(this is similar to suspending/hibernating a laptop). Hence, by
pre-booting the game server VMs, before suspending and
storing them in the Hibernation Nest, when a match is about
to start we just need to copy the suspended VM to the RM
then resume it fairly quickly and there is no need to wait for a
full boot to take place. Once the match is over then the VMs
can be suspended back to dormant state, and moved to the
Loading Chambers (for maintenance) or Hibernation Nest
(for storage), and the RM is now freed for a different game
server.

It has to be noted that VMware now offers VMotion [7]
technology that can move VMs while maintaining the active
connections, this would actually allow us to further optimize
the location of the game server while the match is
progressing. VMotion can migrate live servers in less than 2
seconds by doing clever memory deltas using bitmaps,
unfortunately this 2 second lag will certainly be noticed by
the players and might have adverse effects if it happens
during a critical moment in the match. Furthermore, this
solution requires that the source and target RMs mount the
same disk volume from a SAN, and that they have CPUs
from the same processor family (e.g. PIII and P4 wont work).
Recently published work also show that hot migration is
possible based on the Xen VMM [12], in that paper they
illustrated mobility for an active first-person-shooter game
server (Quake III) which manifested it self as a 60ms
temporary jitter for the participating players. However, this
solution also requires speedy access to the VM files via an
iSCSI gigabit interface. So both VMotion and Xen mobility
are not suitable between data centers, but they can certainly
be used to improve availability within a data center.

4.2 Backward Compatibility

Most game servers could be ported to this framework with
minimal to no code or infrastructure changes; the game
administrators would simply need to install the OS and game
server software inside of a VM, same way they install it
inside a RM today. Once that is done the VM is ready to be
instantiated on any RM running the VMM software. The VM
preparation and software installation is done in the Loading
Chambers, where the RMs main purpose is to host many idle
VMs so that administrators can prepare them for operational
deployment. The VMs are not exposed to any operational
load while waiting in the Loading Chambers other than
allowing the administrators to test their configurations.

Note that the VMM software allows for more than one VM to
share the same RM, however they are fully isolated and each
one can have its own IP address. As far as administrators are
concerned when they connect remotely to a given VM in the
Loading Chambers, they truly believe it’s their own fully
assigned isolated real machine. However, if these machines
are exposed to heavy load, like decompressing a large tar-
ball, then neighboring administrators might sense a sudden
slow down and can start to realize that they are sharing the
machine with somebody else. It must be noted though that
server-class VMM software alleviates this issue by providing
a resources quota system that prevents VMs from
cannibalizing all of the RM resources (i.e. CPU, Memory,
Disk space, IO, Network, etc).

5 EXPERIENCES

It is the goal of this work to show that it is possible to
encapsulate legacy game servers via VMMs, to achieve a
standardized solution for equi-ping placement without
requiring cost prohibitive changes to existing system
architectures. We illustrate that this is a practical solution by
building out a vMatrix prototype, and porting into it
Microsoft’s popular Halo PC game server, which is a
currently a widely deployed game server.

Our experience confirms that the migration cost is negligible,
i.e. no code changes, quick migration, and short learning
curve.

5.1 The Experimental Setup

The lab in which we performed the experiments consists of
three Pentium III servers at 550MHz, 640MB ram and 9GB
hard disks each. The first machine serves as the Production
Cluster, the second machine serves as the Loading Chambers,
and the third machine serves as the Hibernation Nest and also
runs the Oracle software. We used the VMware ESX server,
which is a server-class virtual machine monitor. The ESX
server consumes about 3.5GB of disk space and 184MB of
memory. The CPU overhead is typically less than 5%.

Microsoft’s Halo PC is one of the most popular first-person-
shooters. We used the Oracle command line interface to
create a VM in the Loading Chambers. We then installed on
it the software components illustrated in Figure 5. The time it
took us to do this is not significantly more than it would have
taken to install on a normal real machine. We did not change
a single line of source code for the game server (in fact we
did not even have access to the source code, just the
executables), and it became fully supported within the
VMatrix framework as is.

Figure 5: VM for Microsoft’ Halo PC Game Server

Once we configured the VM for Halo PC in the Loading
Chambers, we next instructed the Oracle to activate the VM,
which caused the VM to be stopped then copied over to the
operational cluster then restarted. When a VM is stopped,
only two files need to be copied, the first is the configuration
file for the VM describing its memory size, Ethernet address,
etc, and the second file represents the hard disk of the VM.
Once the two files are copied over to a dedicated RM in the
operational cluster, it is restarted and becomes ready to accept
a live match. Note that the restart operation, though a bit time
consuming (as opposed to a suspend/resume operation), has
the side benefit of forcing the game server to reregister it self
with the gaming directory service (typically GameSpy
Arcade Host Directory [31]). This allows the game server
name to be mapped correctly to the IP address at the new
location, thus providing transparent mobility.

Another trick that we did in this setup was to lie to the
underlying VM as to how much physical memory is really
present. Even though the real machine only had around
456MB of available free physical memory, we used the
VMM virtualization functions to virtualize the remaining
568MB on disk. The result was that the Windows XP VM
really thought it had 1024MB of physical memory available.
Depending on the active working set while the game server is
running, this might make the machine a bit slower, so it’s not
an optimal situation, but it demonstrates how the services can
be moved even between heterogeneous hardware servers.

The resulting VM file size was about 2GB (1.8GB for
Windows XP, 10MB for Halo PC Server executables, and
268MB for the environment maps). This translates to 1GB
gzip compressed, which takes less then 2 minutes to transfer
over 100Mbps Ethernet, or about 4 minutes over a T3 line.
The transfer time can be further reduced by using smart
differential compression techniques (e.g. chain coding [6]),
though this might add some decompression overhead in
pulling the VM files back from storage. So the activation

time to add servers can be very reasonable and on the order of
a few minutes.

The experiment we have described here is limited in that we
performed it in a single lab at Stanford, so mostly low LAN
pings. We think it’s relatively straightforward to generalize
the experiment to do cross-Atlantic matches, but we did not
have access to an Internet wide VMM cluster.

Note that performance analysis of VMware virtualization
overheads is not the goal of these experiments (in fact
VMware has strict guidelines against publishing explicit
benchmarking metrics); rather it’s the illustration of the ease
of converting an existing game server into this framework
without requiring any coding or architectural changes.
However, we attempted to give rough estimates in Figure 5,
which illustrate that the VMM CPU performance overhead is
usually less then 5%, the memory overhead is about 184MB,
and the hard disk overhead is about 3.5GB.

6 RELATED WORK

To our knowledge no body has tackled the problem of
optimal server placement for the purpose of reducing ping
differential for first-person-shooter game servers. However,
there has been many previous research addressing (1) other
important aspects of having a distributed large scale
multiplayer network of servers, (2) artificially inflating pings
to achieve fairness, and (3) modeling game server traffic
patterns so that ISPs can properly pre-provision network
bandwidth for gaming services. In this section we do a quick
overview of these solutions.

Reference [34] is the most related work among the papers we
surveyed, it tackles the problem of multi-player server
selection (rather than placement). It presents an architecture
to pick a game server minimizing the lag differential between
a group of players. It assumes a dense pre-deployed
population of game servers such that an optimal server can be
selected; however, this is only true for the most popular FPS
games.

Reference [33] proposes changing the game server to
artificially inflate the lag of all players to make them equal.
They present a very sound analysis of how the game server
can track the error perceived at each player due to stale state,
then how to compute the proper delay to hold back the state
updates such that all players observe the same error. Though
this technique certainly improves fairness, it penalizes the
players with good connections (they do propose a budget
scheme to try and mitigate this effect).

Reference [10] from IBM TJ Watson Research Center
proposes an on-demand service platform for online games,
which builds on top of standard grid technologies and
protocols. The main issues they tried to address are: reducing
latency, improving scalability, and achieving economies of

Real Machine (PIII-550MHz, 640MB RAM, 9GB
hard disk)

VMware ESX VMM Server (consumes 184MB RAM,
3.5GB hard disk and 5% CPU)

Virtual Machine exposes a PIII-550MHz with 512MB
RAM and 5.5GB hard disk.

Operating System: Windows XP (1.8GB)

Halo PC Game Server (278MB)

scale by sharing the platform between multiple game servers.
Though they also tackled the problem of first-person-
shooters, they did not attempt to directly address the issue of
minimizing ping differential between players to achieve
fairness. Their solution is not fully backward compatible; it
requires game developer awareness of the service platform
(i.e. requires code changes), though they tried to minimize
that as much as possible.

Another paper from a separate group in IBM TJ Watson and
Columbia University [11] proposes a zoom-in-zoom-out
algorithm for adaptive server selection for large-scale
interactive games. Their focus is to minimize resource
utilization while still providing small latency to participants.
Their algorithm is primarily targeted for MMORPGs
(Massively Multiplayer Online Role Playing Games); which
typically have relaxed delay differential requirements as
compared to FPS games (can tolerate up to seconds of delay
differential versus a max of 180ms for first-person-shooters).
While MMORPGs do not exhibit significant cross-coast
delay differential unfairness, they could still exhibit cross-
continent unfairness, which is why game companies typically
localize MMORPGs on a per-continent basis.

There are many solutions [13] [14] [15] [16] [17] similar to the
two papers listed above, that either focus on the MMORPG
problem and/or propose a new platform that requires
significant code rewriting for the game servers.

Another branch of interesting research in this space focuses
on modeling the traffic generated by game servers [18] [19]
[20] so that ISPs and game server providers can properly
provision their networks. Though this type of research helps
reduce overall latency, it does not address the unfairness
problem due to ping differentials.

It is worth noting that Halo 2 on the Xbox Live [21] platform
uses a very interesting method to pick the host for the
matches. Instead of having dedicated hosts dispersed on the
Internet, the Halo 2 matching servers picks one of the
participants to be the hosting server (in addition to being a
client). The participant is picked based on historical
information that they collect about the throughput and
availability of that player when picked as host before. The
obvious downside of this solution is that the hosting player is
always going to have the smallest ping, which gives them a
significant advantage. This approach also has many security
issues, as the players attempt to hack their local host code to
cheat.

Finally, we refer the reader to the related-work section in our
previous paper [9], which contrasts the VMM approach with
other solutions like Application Servers, Java servlets,
Packaging Tools, OS Virtualization, and Disk Imaging (also
know as ghosting).

7 CONCLUSION

In this paper we presented a novel solution for dynamic first-
person-shooter game server placement that reduces overall
ping to all participating players to achieve a fair match. The
solution is a network of Internet dispersed real machines
running virtual machine monitor software, hence allowing
game server virtual machines to be moved to an equi-ping
real machine. We described our approach in detail and
provided a real-life example based on Microsoft’s popular
Halo PC game. The main advantages of our approach are
backward compatibility and the economies of scale that such
a virtual machine network provides (since it can work with
any game server without any code rewriting).

8 APPENDIX A

This brief section is provided for the benefit of our readers
who are not very familiar with VMM technology. A VMM is
a thin layer of software that runs on top of a real machine and
exports an abstraction of the real machine [2]. This
abstraction is a virtualized (mimicked) view of all hardware
in the machine (e.g. CPU, Memory, IO) as shown in Figure 6.
VMMs allow multiple guest virtual machines with a full OS
and applications to run in separate isolated virtual machine
spaces, such that they cannot affect each other. Note that
unlike a Java Virtual Machine [4], binary code translation,
and machine emulation, the instructions in the VM run
natively on the processor of the host RM with almost no
change, and hence the performance of code running inside of
a VM is almost as fast as the code running directly in a RM.

Figure 6: Virtual Machine Monitor

VMMs were introduced in the 1970s by IBM [3] to arbitrate
access to hardware of an expensive mainframe machine
between a number of client operating systems, and to provide
their customers with a forward migration path to newer
mainframes. VMMs faded in the 1980s, as the PC became
mainstream and computer hardware prices dropped, but were
resurrected recently for the x86 architecture by VMware, Inc.
 [1]. In a well-designed VMM, the code is entirely fooled into
believing its mimicked environment such that it cannot detect
whether it is running inside a virtual machine or a real
machine.

Real Machine: CPU, Memory, Disks, Display, Network

VIRTUAL MACHINE MONITOR

Virtual Machine 1
CPU, Memory, Disks, Display,

Network

Virtual Machine 2
CPU, Memory, Disks, Display,

Network

OS1: Windows 2000 OS2: Linux

IIS Oracle Apache MySQL

VMware VMM software also provides remote control over
the keyboard, monitor, mouse, floppy-drive and CDROM
drive of the virtualized machine. This allows owners of the
VM to remotely install new software or power cycle the VM
without worrying where the machine is physically
instantiated, in a sense replacing the popular
keyboard/video/mouse (KVM) remote switches (also known
as boot boxes).

9 REFERENCES

[1] “VMware Secure Transportable Virtual Machines”, VMware Inc.

http://www.vmware.com
[2] R. P. Goldberg. “Survey of Virtual Machine Research”, IEEE

Computer, June 1974.
[3] IBM Virtual Machine 370, 1972. IBM Corporation

http://www-1.ibm.com/ibm/history/history/year_1970.html
[4] Tim Lindholm and Frank Yellin. “Java Virtual Machine

Specification, 2nd Edition”, 1999, Addison-Wesley.
[5] Microsoft Virtual Server.

http://www.microsoft.com/windowsserversystem/virtualserver/default.
mspx

[6] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow,
Monica S. Lam, and Mendel Rosenblum. “Optimizing the Migration of
Virtual Computers”, USENIX OSDI 2002.

[7] “Building Virtual Infrastructure with VMware VirtualCenter”, white
paper, VMware Inc. http://www.vmware.com/pdf/vc_wp.pdf

[8] Amr Awadallah and Mendel Rosenblum. “The vMatrix: A network
of virtual machine monitors for dynamic content distribution”, Seventh
International Workshop on Web Content Caching and Distribution,
August 2002.

[9] Amr Awadallah and Mendel Rosenblum. “The vMatrix: Server
Switching”. IEEE 10th International Workshop on Future Trends in
Distributed Computing Systems, Suzhou, China, May 2004

[10] Debanjan Saha, Sambit Sahu, and Anees Shaikh. “A Service
Platform for On-Line Games”. Proceedings of the 2nd workshop on
Network and system support for games, May 2003.

[11] KangWon Lee, BongJun Ko, and Seraphin Calo. “Adaptive Server
Selection for Large Scale Interactive Online Games”. ACM
NOSSDAV’04, Cork, Ireland June, 2004.

[12] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen,
Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. “Live
Migration of Virtual Machines”. USENIX NSDI 2005.

[13] D. Bauer, S. Rooney, and P. Scotton. “Network infrastructure for
massively distributed games”. Workshop on Network and System
Support for Games (NETGAMES), Germany, April 2002.

[14] A. R. Bharambe, S. Rao, and S. Seshan. “Mercury: A scalable
publish-subscribe system for Internet games”. Workshop on Network
and System Support for Games (NETGAMES), Germany, April 2002.

[15] S. Fiedler, M. Wallner, and M. Weber. “A communication
architecture for massive multiplayer games”. Workshop on Network
and System Support for Games (NETGAMES), Germany, April 2002.

[16] B. Knutsson, H. Lu, W. Xu, B. Hopkins. “Peer-to-Peer Support for
Massively Multiplayer Games”. INFOCOM, Mar. 2004.

[17] Butterfly.net, Inc. The Butterfly Grid, 2003.
http://www.butterfly.net/platform

[18] Wu-chang Feng, Francis Chang, Wu-chi Feng, and Jonathan
Walpole. "Provisioning On-line Games: A Traffic Analysis of a Busy
Counter-Strike Server," SIGCOMM Internet Measurement Workshop,
November 2002.

[19] Tristan Henderson, and Saleem Bhatti. “Modelling user behavior in
networked games”. ACM Multimedia 2001, June 2001.

[20] Johanness Faerber. "Traffic Modelling for Fast Action Network
Games". ACM Multimedia Tools and Applications, May 2004.

[21] Microsoft Corporation, “Xbox Live”.
http://www.xbox.com/live

[22] Wu-chang Feng, Wu-chi Feng. “On the geographic distribution of
on-line game servers and players”. Workshop on Network and System
Support for Games (NETGAMES), 2003.

[23] Grenville Armitage. “An experimental estimation of latency
sensitivity in multiplayer Quake 3”. 11th IEEE International
Conference on Networks (ICON 2003), Australia, September 2003.

[24] Grenville Armitage, Lawrence Stewart. "Limitations of using Real-
World, Public Servers to Estimate Jitter Tolerance Of First Person
Shooter Games", ACM SIGCHI ACE2004 conference, Singapore, June
2004

[25] Tom Beigbeder, Rory Couglan, Corey Lusher, John Plunkett,
Emmanuel Agu, and Mark Claypool. “The Effects of Loss and Latency
on User Performance in Unreal Tournament 2003”. ACM SIGCOMM
Workshop Network and System Support for Games (NETGAMES),
2004.

[26] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De
Vleeschauwer, and Natalie Degrande. “Objective and Subjective
Evaluation of the Influence of Small Amounts of Delay and Jitter on a
Recent First Person Shooter Game”. ACM SIGCOMM Workshop
Network and System Support for Games (NETGAMES), 2004.

[27] Tristan Henderson. “Latency and User Behaviour on a Multiplayer
Game Server”. Third International Workshop on Networked Group
Communication (NGC2001), November 2001, London, UK.

[28] Xen: An open source Virtual Machine Monitor for x86.
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/index.html

[29] The Cyber Athlete Professional League.
http://www.thecpl.com/league/

[30] Akamai EdgeScape: Internet IP knowledge base.
http://www.akamai.com/en/html/services/edge_how_it_works.html

[31] Game Spy Arcade Game Server Directory.
http://www.gamespyarcade.com/

[32] Bernard Wong, Aleksandrs Slivkins, and Emin G¨un Sirer.
“Meridian: A Lightweight Network Location Service without Virtual
Coordinates”. ACM SIGCOMM 2005, Pennsylvania, USA, August
2005.

[33] Sudhir Aggarwal, Hemant Banavar, Sarit Mukherjee, and Sampath
Rangarajan. “Fairness in Dead Reckoning based Distributed
MultiPlayer Games”. ACM NETGAMES 2005, New York, USA,
October 2005.

[34] Steven Gargolinski, Christopher St. Pierre, and Mark Claypool.
“Game Server Selection for Multiple Players”. ACM NETGAMES
2005, New York, USA, October 2005.

[35] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. “King:
Estimating Latency between Arbitrary Internet End Hosts”.
SIGCOMM Internet Measurement Workshop 2002, France, November
2002.

